Contribution to Nano or Micro Crystallization induction in Silica-based Glass by Femtosecond laser Irradiation

نویسندگان

  • Guorong CHEN
  • Yongsheng LI
  • Yunxia YANG
  • Huidan ZENG
چکیده

Femtosecond laser processing in transparent materials is promising owing to the accessible control of energy deposition in time and in space. In this regime, it opens fantastic opportunities to manufacture novel multifunctional composite materials by manipulating the size, shape and orientation of nonlinear crystals with intrinsic symmetry embedded in glasses. This dissertation mainly contributes to the control of nano or micro crystallization inside silica-based glasses for the development of novel multifunctional electro-optical materials by femtosecond laser irradiation. We demonstrate the feasibilities of femtosecond laser materials processing for re-shaping linear and non-linear optical properties in silica-based glass by inducing or fabricating different micro/nanoclusters as well as their shapes and orientation (especially asymmetric clusters), sizes, and distributions (at the sub-micrometer scale). In this thesis, it firstly covers a chapter for the investigation on ultrafast asymmetric orientational writing in pure silica as well as in silica-based glass in order to well master the laser writing. We discuss the effects of the laser parameters on asymmetric writing such as writing speed and the laser polarization by the femtosecond-laser generated optical properties and structures, e.g., birefringence, phase change and surface topography of the cross section of laser tracks. The mechanism of orientational dependent writing is likely due to the oblique pulse front tilt affected by the polarization orientation plane leading to different anisotropic photosensitivity. 3D photo-precipitation of oriented LiNbO3-like crystals in glass with femtosecond laser irradiation is also achieved at high repetition rate (typ. 300 kHz). Oriented crystals with their polar axis mostly aligned with the laser scanning direction have been fabricated by manipulation of the temperature gradient in adjusting the laser parameters. Second harmonic generation (SHG) microscopy demonstrates optical activity of crystalline features and provides some orientation information suggestive of certain dominant or favored orientations. Electron back-scattering diffraction (EBSD) results provide more detailed local crystal orientation information and illustrate interesting features of the structure of the lines, with regions of distinctly different grain sizes and orientations. Furthermore, modeling the temperature gradient was proposed for better understanding the formation mechanism of the orientation of femtosecond laser-induced crystallization when the laser is moved (not only in the static mode). te l-0 07 96 21 9, v er si on 1 2 M ar 2 01 3 Quasi-spherical or quasi-rod gold nanoparticles in silica-based glass can be re-shaped by femtosecond laser irradiation studying through their properties, and their orientation appears to be parallel to the written lines. Gold nanoparticles in the size range of 3-4 nm were precipitated by post heat-treatment. After ultrafast laser irradiation, optical absorption, birefringence and dichroism measurements are performed to investigate the modification of gold nanoparticle shape in glass. Theoretical simulations have been carried out to interpret the experimental results based on the Gans' theory and Drude model together with the known dielectric constants of gold. Furthermore, feasible applications and efficient design strategies are also referred for future devices based on micro/nanoclusters 3D precipitation, shaping and orientation mastering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward nano- and microprocessing in glass with femtosecond laser pulses

In this paper, we report on the refractive index changes and vacancies that are induced in silica glass by the irradiation of ultrashort laser pulses. We fabricated waveguides, couplers, and gratings by the filamentation of femtosecond laser pulses. We demonstrate the formation and the movement of sub-micrometer or nanometer vacancies, called voids. We show the formation of three-dimensional sh...

متن کامل

Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film.

Ultrafast pulsed laser irradiation is demonstrated to be able to produce surface nano-structuring and simultaneous crystallization of amorphous silicon thin film in one step laser processing. After fs laser irradiation on 80 nm-thick a-Si deposited on Corning 1737 glass substrate, the color change from light yellow to dark brown was observed on the sample surface. AFM images show that the surfa...

متن کامل

Femtosecond micro- and nano-machining of materials for microfluidic applications

Ultrafast laser micromachining is a promising candidate for microand nano-fabrication technology. Due to the high precision of femtosecond ablation, laser-machined features can be added to devices prototyped by lithography. To accomplish that, parametric studies of laser interrogation of materials of interest are necessary. We present femtosecond laser ablation studies of glass, PDMS, fused sil...

متن کامل

Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass.

The ability of 8 picosecond pulse lasers for three dimensional direct-writing in the bulk of transparent dielectrics is assessed through a comparative study with a femtosecond laser delivering 600 fs pulses. The comparison addresses two main applications: the fabrication of birefringent optical elements and two-step machining by laser exposure and post-processing by chemical etching. Formation ...

متن کامل

Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching.

We present novel results obtained in the fabrication of high-aspect ratio micro-fluidic microstructures chemically etched from fused silica substrates locally exposed to femtosecond laser radiation. A volume sampling method to generate three-dimensional patterns is proposed and a systematic SEM-based analysis of the microstructure is presented. The results obtained gives new insights toward a b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013